350 research outputs found

    Gauge Instantons from Open Strings

    Full text link
    In this contribution we describe how to obtain instanton effects in four dimensional gauge theories by computing string scattering amplitudes in D3/D(-1) brane systems. In particular we show that the disks with mixed boundary conditions, which are typical of the D3/D(-1) system, are the sources for the classical instanton solution.Comment: 7 pages, 2 figures, Contribution to the proceedings of the 36th International Symposium Ahrenshoop, Berlin, Germany, 26-30 August 200

    The W1+∞W_{1 + \infty } effective theory of the Calogero- Sutherland model and Luttinger systems.

    Full text link
    We construct the effective field theory of the Calogero-Sutherland model in the thermodynamic limit of large number of particles NN. It is given by a \winf conformal field theory (with central charge c=1c=1) that describes {\it exactly} the spatial density fluctuations arising from the low-energy excitations about the Fermi surface. Our approach does not rely on the integrable character of the model, and indicates how to extend previous results to any order in powers of 1/N1/N. Moreover, the same effective theory can also be used to describe an entire universality class of (1+1)(1+1)-dimensional fermionic systems beyond the Calogero-Sutherland model, that we identify with the class of {\it chiral Luttinger systems}. We also explain how a systematic bosonization procedure can be performed using the \winf generators, and propose this algebraic approach to {\it classify} low-dimensional non-relativistic fermionic systems, given that all representations of \winf are known. This approach has the appeal of being mathematically complete and physically intuitive, encoding the picture suggested by Luttinger's theorem.Comment: 13 pages, plain LaTeX, no figures

    Stable non-BPS D-branes of type I

    Get PDF
    We review the boundary state description of the non-BPS D-branes in the type I string theory and show that the only stable configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS D-particles and compare them with the interactions of the dual non-BPS particles of the heterotic string finding complete agreement. In this way we provide further dynamical evidence of the heterotic/type I duality.Comment: 8 pages, 1 figure.eps, JHEP.cls, talk given by A. Lerda at the TMR Conference "Quantum aspects of gauge theories, supersymmetry and unification", Paris, September 199

    The extended conformal theory of Luttinger systems

    Get PDF
    We describe the recently introduced method of algebraic bosonization of the (1+1)(1+1)-dimensional Luttinger systems by discussing in detail the specific case of the Calogero-Sutherland model, and mentioning the hard-core Bose gas. We also compare our findings with the exact Bethe Ansatz results.Comment: 9 pages, plain Latex file, ,based on a talk given by S. Sciuto at the II International Sakharov Conference on Physics, Moscow, Russia, 20-24 May 9

    Anyonic Realization of the Quantum Affine Lie Algebra U_q(A_N)

    Full text link
    We give a realization of quantum affine Lie algebra Uq(A^N−1)U_q(\hat A_{N-1}) in terms of anyons defined on a two-dimensional lattice, the deformation parameter qq being related to the statistical parameter Îœ\nu of the anyons by q=eiπΜq = e^{i\pi\nu}. In the limit of the deformation parameter going to one we recover the Feingold-Frenkel fermionic construction of undeformed affine Lie algebra.Comment: 13p LaTeX Document (should be run twice

    Gauge theory renormalizations from the open bosonic string

    Get PDF
    We present a unified point of view on the different methods available in the literature to extract gauge theory renormalization constants from the low-energy limit of string theory. The Bern-Kosower method, based on an off-shell continuation of string theory amplitudes, and the construction of low-energy string theory effective actions for gauge particles, can both be understood in terms of strings interacting with background gauge fields, and thus reproduce, in the low-energy limit, the field theory results of the background field method. We present in particular a consistent off-shell continuation of the one-loop gluon amplitudes in the open bosonic string that reproduces exactly the results of the background field method in the Feynman gauge.Comment: 14 pages, latex, no figure

    Modular anomaly equation, heat kernel and S-duality in N=2 theories

    Get PDF
    We investigate epsilon-deformed N=2 superconformal gauge theories in four dimensions, focusing on the N=2* and Nf=4 SU(2) cases. We show how the modular anomaly equation obeyed by the deformed prepotential can be efficiently used to derive its non-perturbative expression starting from the perturbative one. We also show that the modular anomaly equation implies that S-duality is implemented by means of an exact Fourier transform even for arbitrary values of the deformation parameters, and then we argue that it is possible, perturbatively in the deformation, to choose appropriate variables such that it reduces to a Legendre transform.Comment: 30 pages, LeTeX2e. V2: references added, appendix B expanded, a few typos correcte

    The extended conformal theory of the Calogero-Sutherland model

    Get PDF
    We describe the recently introduced method of Algebraic Bosonization of (1+1)-dimensional fermionic systems by discussing the specific case of the Calogero-Sutherland model. A comparison with the Bethe Ansatz results is also presented.Comment: 12 pages, plain LaTeX, no figures; To appear in the proceedings of the IV Meeting "Common Trends in Condensed Matter and High Energy Physics", Chia Laguna, Cagliari, Italy, 3-10 Sep. 199

    Stable non-BPS states in string theory: a pedagogical review

    Get PDF
    We present a pedagogical review of the stable non-BPS states in string theory which have recently attracted some attention in the literature. In particular, following the analysis of A. Sen, we discuss in detail the case of the stable non-BPS D-particle of Type I theory whose existence is predicted (and required) by the heterotic/Type I duality. We show that this D-particle originates from an unstable bound state formed by a D1/anti-D1 pair of Type IIB in which the tachyon field acquires a solitonic kink configuration. The mechanism of tachyon condensation is discussed first at a qualitative level and then with an exact conformal field theory analysis.Comment: 58 pages, 1 figure; minor correction
    • 

    corecore